A completeness relation for the q-analogue coherent states by q-integration

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23 L945
(http://iopscience.iop.org/0305-4470/23/18/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 08:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A completeness relation for the \boldsymbol{q}-analogue coherent states by q-integration

Robert W Gray \dagger and Charles A Nelson \ddagger
\dagger IBM Corporation 1701 North Street, Endicott, NY 13760, USA
\ddagger Department of Physics, State University of New York at Binghamton, Binghamton, NY 13901, USA

Received 18 July 1990

Abstract

This is used to prove a completeness relation for the q-analogue of the usual coherent states. These states are overcomplete.

The concept of integration is very important in mathematical physics and quantum field theory. Jackson [1-3] introduced the idea of q-differentiation and q-integration in 'basic analysis'. Recently, in the q-harmonic oscillator realization of quantum groups [4-17], several authors have extended the definition of q-differentiation [18-20]. In this letter we use the idea of q-integration in the q-oscillator realization of quantum groups to prove a resolution of unity for the q-analogue coherent states.

For a quantum group, such as $\mathrm{SU}_{q}(2)$, we define for q real

$$
\begin{equation*}
[n]_{q}=[n]=\frac{q^{n / 2}-q^{-n / 2}}{q^{1 / 2}-q^{-1 / 2}} \tag{1}
\end{equation*}
$$

Note that $[n]_{q}$ is invariant when q is replaced by $1 / q$. If we write $q=\exp (s)$ then since $\sinh (n) \equiv \frac{1}{2}[\exp (n)-\exp (-n)]$, we can write $[n]_{q}=\sinh (s n / 2) / \sinh (1 / 2)$. In the mathematics literature $[1-3,21-26]$, one finds $[n]_{J} \equiv\left(1-q^{n}\right) /(1-q)$. So $q^{(1-n) / 2}[n]_{J}=[n]_{q}$. We define the q-factorial to be $[n]!\equiv[n][n-1][n-2] \ldots[1]$. Then

$$
\begin{equation*}
[n]_{q}!=[n]!=q^{-(n(n-1)) / 4}[n]_{S}!. \tag{2}
\end{equation*}
$$

Exton [25,26] defines a family of q-exponential functions by

$$
\begin{equation*}
e_{q}^{\lambda}(z) \equiv \sum_{n=0}^{\infty} \frac{z^{n} q^{\lambda n(n-1)}}{[n]_{J}!} . \tag{3}
\end{equation*}
$$

When $\lambda=0$ and $\lambda=\frac{1}{2}$, one gets the two exponential functions defined by Jackson [2]. For $\lambda=\frac{1}{4}$ one gets an exponential function which is invariant to the transformation $q \rightarrow 1 / q$.

$$
\begin{equation*}
e_{q}(z) \equiv \sum_{n=0}^{\infty} \frac{z^{n}}{[n]!} . \tag{4}
\end{equation*}
$$

Unlike the case of $\lambda=0$ where the radius of convergence of the series representation
is finite, for $\lambda>0$ this series representation of $e_{q}(z)$ converges for all finite values of z independent of the value of q. Note that $[1]_{q}=1$ for all values of q and for $n>1,[n] \geqslant n$.

So for all $x \geqslant 0$

$$
\begin{equation*}
e_{q}(x) \leqslant \exp (x) \tag{5}
\end{equation*}
$$

For quantum groups, the q-derivative is defined to be [18-20]

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d}_{q} x} f(x)=\frac{f\left(\left(^{-1 / 2} x\right)-f\left(q^{1 / 2} x\right)\right.}{q^{-1 / 2} x-q^{1 / 2} x} \tag{6}
\end{equation*}
$$

For $f(x)$ on the interval $[0, a]$ the inverse operation is

$$
\begin{equation*}
\int_{0}^{a} f(x) \mathrm{d}_{q} x=a\left(q^{-1 / 2}-q^{1 / 2}\right) \sum_{n=0}^{\infty} q^{(2 n+1) / 2} f\left(q^{(2 n+1) / 2} a\right) \tag{7}
\end{equation*}
$$

and for the interval $[0, \infty)$

$$
\begin{equation*}
\int_{0}^{\infty} f(x) \mathrm{d}_{q} x=\left(q^{-1 / 2}-q^{1 / 2}\right) \sum_{n=-\infty}^{\infty} q^{(2 n+1) / 2} f\left(q^{(2 n+1) / 2}\right) \tag{8}
\end{equation*}
$$

So

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d}_{q} x}\left(a x^{n}\right)=a[n] x^{n-1} \tag{9}\\
& \int a x^{n-1} \mathrm{~d}_{q} x=\frac{1}{[n]} a x^{n}+\text { constant } . \tag{10}
\end{align*}
$$

Therefore, $\left(\mathrm{d} / \mathrm{d}_{q} x\right) e_{q}(a x)=a e_{q}(a x)$ and we have

$$
\begin{equation*}
\int e_{q}(a x) \mathrm{d}_{q} x=\frac{1}{a} e_{q}(a x)+\text { constant } \tag{11}
\end{equation*}
$$

From the definition of the q-derivative we derive the q-integration by parts formula:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d}_{q} x}(f(x) g(x))=\frac{f\left(q^{-1 / 2} x\right) g\left(q^{-1 / 2} x\right)-f\left(q^{3 / 2} x\right) g\left(q^{1 / 2} x\right)}{q^{-1 / 2} x-q^{1 / 2} x} \tag{12}
\end{equation*}
$$

So

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d}_{q} x}(f(x) g(x))=\left(\frac{\mathrm{d}}{\mathrm{~d}_{q} x} f(x)\right) g\left(q^{-1 / 2} x\right)+f\left(q^{1 / 2} x\right)\left(\frac{\mathrm{d}}{\mathrm{~d}_{q} x} g(x)\right) \tag{13}
\end{equation*}
$$

and
$\int_{0}^{a} f\left(q^{1 / 2} x\right)\left(\frac{\mathrm{d}}{\mathrm{d}_{q} x} g(x)\right) \mathrm{d}_{q} x=\left.f(x) g(x)\right|_{x=0} ^{x=a}-\int_{0}^{a}\left(\frac{\mathrm{~d}}{\mathrm{~d}_{q} x} f(x)\right) g\left(q^{-1 / 2} x\right) \mathrm{d}_{q} x$.
Note that this result is not unique since we also have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d}_{q} x}(f(x) g(x))=\left(\frac{\mathrm{d}}{\mathrm{~d}_{q} x} g(x)\right) f\left(q^{-1 / 2} x\right)+g\left(q^{1 / 2} x\right)\left(\frac{\mathrm{d}}{\mathrm{~d}_{q} x} f(x)\right) . \tag{15}
\end{equation*}
$$

Therefore
$\int_{0}^{a} f\left(q^{-1 / 2} x\right)\left(\frac{\mathrm{d}}{\mathrm{d}_{q} x} g(x)\right) \mathrm{d}_{q} x=\left.f(x) g(x)\right|_{x=0} ^{x=a}-\int_{0}^{a}\left(\frac{\mathrm{~d}}{\mathrm{~d}_{q} x} f(x)\right) g\left(q^{1 / 2} x\right) \mathrm{d}_{q} x$
which is different from equation (14) above.
The resolution of unity for the q-analogue of the coherent states is based on a q-analogue of Euler's formula which we now derive.

We first define $-\zeta$ to be the largest zero of $e_{q}(x)$. Note that ζ is >0 and that as $q \rightarrow 1, e_{q}(x) \rightarrow \exp (x)$ and $-\zeta \rightarrow-\infty$. Whereas for $q \rightarrow 0, e_{q}(x) \rightarrow 1+x$ and $-\zeta \rightarrow-1$. We then redefine $e_{q}(x)$ to be

$$
\begin{equation*}
e_{q}(x) \equiv \sum_{n=0}^{\infty} \frac{x^{n}}{[n]!} \quad \text { for }-\zeta<x \text { and zero otherwise } \tag{17}
\end{equation*}
$$

In the same manner, we restrict the function $f(x)=x^{n}$ to be x^{n} for $-\zeta<x$ and zero otherwise. Then using q-integration by parts (14) we obtain

$$
\begin{equation*}
\int_{0}^{\zeta} e_{q}(-x) x^{n} \mathrm{~d}_{q} x=q^{-n / 2}[n]_{q} \int_{0}^{\zeta} e_{q}\left(-q^{-1 / 2} x\right) x^{n-1} \mathrm{~d}_{q} x \tag{18}
\end{equation*}
$$

and then

$$
\begin{align*}
\int_{0}^{\zeta} e_{q}(-x) x^{n} & \mathrm{~d}_{q} x \\
= & \left(q^{-n / 2}[n]_{q} q^{0}\right)\left(q^{-(n-1) / 2}[n-1]_{q} q^{1 / 2}\right) \ldots\left(q^{-1 / 2}[1] q^{(n-1) / 2}\right) \\
& \times \int_{0}^{\zeta} e_{q}\left(-q^{-n / 2} x\right) \mathrm{d}_{q} x \tag{19}
\end{align*}
$$

Since

$$
\begin{equation*}
\int_{0}^{\zeta} e_{q}\left(-q^{-n / 2} x\right) \mathrm{d}_{q} x=q^{n / 2} \tag{20}
\end{equation*}
$$

we see that all the q s cancel to leave

$$
\begin{equation*}
\int_{0}^{\zeta} e_{q}(-x) x^{n} \mathrm{~d}_{q} x=[n][n-1][n-2] \ldots[1]=[n]!. \tag{21}
\end{equation*}
$$

This is the q-analogue of Euler's formula for $\Gamma(x)$.
Note that starting with the left-hand side of (18) and using the other integration by parts formula (16), also yields (21).

The q-harmonic oscillator communication relations are

$$
\begin{equation*}
\left[a, a^{\dagger}\right]=a a^{\dagger}-q^{-1 / 2} a^{\dagger} a=q^{-N / 2} \tag{22}
\end{equation*}
$$

and

$$
\left[N, a^{+}\right]=a^{\dagger} \quad[N, a]=-a
$$

Under the occupation number basis

$$
\begin{align*}
& a^{\dagger}|n\rangle=\sqrt{[n+1]}|n+1\rangle \tag{23}\\
& a|n\rangle=\sqrt{[n]}|n-1\rangle \tag{24}\\
& a|0\rangle=0 \tag{25}
\end{align*}
$$

where $\langle m \mid n\rangle=\delta_{m n}$. The resolution of unity is written as

$$
\begin{equation*}
I=\sum_{n=0}^{\infty}|n\rangle\langle n| . \tag{26}
\end{equation*}
$$

The q-coherent states are defined to be eigenstates of the operator a.

$$
\begin{equation*}
a|z\rangle_{q}=z|z\rangle_{q} \tag{27}
\end{equation*}
$$

For the normal coherent states, z is often a complex variable [27-29]. However, in general, z depends on other considerations, for example the dynamics of the physical system one is describing. For the resolution of unity for quantum groups it is natural to restrict $|z|$ such that $|z| \leqslant \sqrt{\zeta}$. From (27) we get

$$
\begin{equation*}
|z\rangle_{q} \equiv\langle 0 \mid z\rangle_{q} \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{[n]!}}|n\rangle . \tag{28}
\end{equation*}
$$

Requiring $q<z|z\rangle_{q}=1$,

$$
\begin{equation*}
\langle 0 \mid z\rangle_{q}=\exp (\mathrm{i} \phi) e_{q}\left(|z|^{2}\right)^{-1 / 2} . \tag{29}
\end{equation*}
$$

Then choosing $\phi=0$,

$$
\begin{equation*}
|z\rangle_{q}=N(z) \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{[n]!}}|n\rangle \tag{30}
\end{equation*}
$$

where $N(z)=e_{q}\left(|z|^{2}\right)^{-1 / 2}$.
There exists a resolution of unity for the coherent states. The identity operator I can be written

$$
\begin{equation*}
I=\int|z\rangle_{q q}(z \mid \mathrm{d} \mu(z) \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{d} \mu(z)=\frac{1}{2 \pi} e_{q}\left(|z|^{2}\right) e_{q}\left(-|z|^{2}\right) \mathrm{d}_{q}|z|^{2} \mathrm{~d} \theta \tag{32}
\end{equation*}
$$

Note that the integral over $\mathrm{d} \theta$ is a normal integration but the integration over $|z|^{2}$ is a q-integration. This result follows by

$$
\begin{align*}
& \int|z\rangle_{q q}\langle z| \mathrm{d} \mu(z) \\
&= \frac{1}{2 \pi} \int \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{|z|^{n}\left|z^{*}\right|^{m}}{\sqrt{[n]!} \sqrt{[m]!}} e_{q}\left(-|z|^{2}\right) \mathrm{d}_{q}|z|^{2} \\
& \times \int \exp (\mathrm{i} n \theta-\mathrm{i} m \theta) \mathrm{d} \theta|n\rangle\langle m| \tag{33}\\
&= \frac{1}{2 \pi} \int \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{|z|^{n}\left|z^{*}\right|^{m}}{\sqrt{[n]!} \sqrt{[m]!}} e_{q}\left(-|z|^{2}\right) \mathrm{d}_{q}|z|^{2} 2 \pi \delta_{m n}|n\rangle\langle m| \tag{34}\\
&= \sum_{n=0}^{\infty} \frac{1}{[n]!} \int_{0}^{\zeta} x^{n} e_{q}(-x) \mathrm{d}_{q} x|n\rangle\langle n| \tag{35}
\end{align*}
$$

where $x=|z|^{2}$.
Then by the q-analogue of Euler's formula in the case of quantum groups

$$
\begin{equation*}
\int|z\rangle_{q q}\langle z| \mathrm{d} \mu(z)=\sum_{n=0}^{\infty}|n\rangle\langle n|=I . \tag{36}
\end{equation*}
$$

So there exists a resolution of unity for the coherent states $|z\rangle_{q}$. The states with $|z|^{2}=\zeta$ do not contribute.

For historical completeness, we note that using Jackson's definition of [$n]_{J}$ and one of his identities (2), Arik and Coon [24] obtained a similar relation fifteen years ago. However, the old [24] and new [12-14] q-analogue generalizations of the harmonic oscillator, the convergence properties of the $e_{q}(z)$, the q-integration identities, and the integration measures are non-trivially different.

For two arbitrary coherent states, $|\alpha\rangle_{q}$ and $|\beta\rangle_{q}$

$$
\begin{align*}
\langle\alpha \mid \beta\rangle & =N(\alpha) N(\beta) \sum_{m=0}^{\infty} \frac{\left(\alpha^{*}\right)^{m}}{\sqrt{[m]!}} \sum_{n=0}^{\infty} \frac{\beta^{n}}{\sqrt{[n]!}}\langle m \mid n\rangle \tag{37}\\
& =N(\alpha) N(\beta) \sum_{m=0}^{\infty} \frac{\sum_{n=0}^{\infty} \frac{\left(\alpha^{*}\right)^{m}}{\sqrt{[m]!}} \frac{\beta^{n}}{\sqrt{[n]!}} \delta_{m n}}{} \tag{38}\\
& =N(\alpha) N(\beta) \sum_{n=0}^{\infty} \frac{\left(\alpha^{*} \beta\right)^{n}}{[n]!} . \tag{39}
\end{align*}
$$

So

$$
\begin{equation*}
\langle\alpha \mid \beta\rangle=N(\alpha) N(\beta) e_{q}\left(\alpha^{*} \beta\right) . \tag{40}
\end{equation*}
$$

Since $|\alpha| \leqslant \sqrt{\zeta}$ and $|\beta| \leqslant \sqrt{\zeta}$, we have $\left|\alpha^{*} \beta\right| \leqslant \zeta$. In general $e_{q}\left(\alpha^{*} \beta\right) \neq 0$ and so arbitrary coherent states are not orthogonal.

As a result of the resolution of unity an arbitrary vector can be written

$$
\begin{equation*}
|\psi\rangle=\int|z\rangle_{q q}\langle z \mid \psi\rangle \mathrm{d} \mu(z) . \tag{41}
\end{equation*}
$$

Setting $|\psi\rangle=|\alpha\rangle_{q}$ an arbitrary coherent state, then

$$
\begin{equation*}
|\alpha\rangle_{q}=\int|z\rangle_{q q}\langle z \mid \alpha\rangle_{q} \mathrm{~d} \mu(z) \tag{42}
\end{equation*}
$$

so by the non-orthogonality of $|z\rangle_{q}$ and $|\alpha\rangle_{q}$, the q-analogue coherent states are linearly dependent. As a consequence, the q-analogue coherent states are not only complete but are actually overcomplete.

A more detailed treatment will be provided in a thesis of one of us [30].
One of us (CAN) was partially supported by US Department of Energy Grant No. DE-FG02-86ER40291. We thank Professor R Askey for his comments on the properties of equation (3).

References

[1] Jackson F H 1908 Trans. R. Soc. 46 253-81
[2] Jackson F H 1910 Quart. J. Math. 41 193-203
[3] Jackson F H 1951 Quart. J. Math. 2 1-16
[4] Faddeev L D 1984 Les Houches Lectures 1982 (Amsterdam: North-Holland 1984)
[5] Sklyanin E K 1982 Funct. Anal. Appl. 16262
[6] Kulish P P and Reshetikhin N Y 1983 J. Sov. Math. 232435
[7] Drinfeld V G 1986 Proc. Int. Congr. Math. vol 1 (Berkeley, CA: University of California Press) pp 798-820
[8] Jimbo M 1986 Lett. Math. Phys. 11247
[9] Manin Yu I 1987 Ann. Inst. Fourier 37191
[10] Woronowicz S L 1987 Commun. Math. Phys. 111613
[11] Takhtajan L A 1989 Adv. Stud. Pure Math. 19435
[12] Macfarlane A J 1989 J. Phys. A: Math. Gen. 22 4581-8
[13] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873-8
[14] Chaichian M and Kulish P P 1990 Phys. Lett. 234B 72
[15] Sun C-P and Fu H-C 1989 J. Phys. A: Math. Gen. 22 L983-6
[16] Ng Y J 1989 Preprint IFP-365-UNC North Carolina University
[17] Floreanini R, Spiridonov V P and Vinet L 1990 Preprint UCLA/90/TEP/12, CALT-63-564
[18] Bernard D and LeClair A 1989 Phys. Lett. 227B 417
[19] Ruegg H 1989 Preprint UGVA-DPT 1989/08-625 University of Geneva
[20] Kulish P P and Damaskinsky E V 1990 J. Phys. A: Math. Gen. 23 L415-9
[21] Andrews G A 1986 AMS Regional Conf. 661
[22] Askey R 1978 Appl. Anal. 8 125-41
[23] Romans L J 1988 Preprint USC-88/HEP014 Coon D D, Yu S and Baker M 1972 Phys. Rev. D 51429
[24] Arik M and Coon D D 1976 J. Math. Phys. 174
[25] Exton H 1981 Proc. Kon. Nederl. Akad. Wetensch A 84 165-71
[26] Exton H 1983 q-Hypergeometric Functions And Applications, (New York: Ellis Horwood)
[27] Klauder J R and Skagerstam B-S 1985 Coherent States (Singapore: World Scientific)
[28] Perelomov A 1986 Generalized Coherent States And Their Applications (Berlin: Springer)
[29] Klauder J R and Sudarshan E C G 1968 Quantum Optics (New York: Benjamin)
[30] Gray R W Thesis State University of New York, Binghamton, in preparation

