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Abstract. q-integration is defined for the q-oscillator realization of quantum groups. This 
is used to prove a completeness relation for the q-analogue of the usual coherent states. 
These states are overcomplete. 

The concept of integration is very important in mathematical physics and quantum 
field theory. Jackson [ 1-31 introduced the idea of q-differentiation and q-integration 
in 'basic analysis'. Recently, in the q-harmonic oscillator realization of quantum groups 
[4-171, several authors have extended the definition of q-differentiation [ 18-20]. In 
this letter we use the idea of q-integration in the q-oscillator realization of quantum 
groups to prove a resolution of unity for the q-analogue coherent states. 

For a quantum group, such as SU,(2), we define for q real 

Note that [ n ] ,  is invariant when q is replaced by l /q.  If we write q = exp(s) then since 
sinh(n) $[exp(n) -exp(-n)], we can write [n], = sinh(sn/2)/sinh(l/2). In the mathe- 
matics literature [l-3, 21-26], one finds [n], = (1 -q") / ( l -q) .  So q(1--""'2[n], = [n], .  
We define the q-factorial to be [ n]! = [ n][ n - 1][ n - 21 . . . [ 11. Then 

[n15 !. (2) ( n ( n - 1 ) ) / 4  [n],! = [n]! = q- 

Exton [25,26] defines a family of q-exponential functions by 
cc Z n q h n ( n - - l )  

n = O  [ n ] , !  . 
e t ( z ) =  

When h = 0 and h = f , one gets the two exponential functions defined by Jackson [2]. 
For h = f  one gets an exponential function which is invariant to the transformation 
9 + l /q.  

Unlike the case of A = 0 where the radius of convergence of the series representation 
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is finite, for A > 0 this series representation of e,(z) converges for all finite values of z 
independent of the value of q. Note that [ 11, = 1 for all values of q and for n > 1, [ n] 3 n. 

So for all x z 0  
e,(x) C exp(x). 

For quantum groups, the q-derivative is defined to be [18-201 
d f( -'/'x) -f( q1I2x) 

d,x 
-f(x) = q - 1 / 2 x  - q l / 2 x  

For f (x)  on the interval [0, a ]  the inverse operation is 

J o  n = O  

and for the interval [O, a) 

J o  n=-m 

so 
d 
- (ax") = a[n]x"-' 
d,x 

( 5 )  

(9) 

(10) 
1 

ax"-' d,x = - ax" +constant. I [ n l  
Therefore, (d/d,x)e,(ax) = ae,(ax) and we have 

(11) 
1 

e,(ax) d,x=- e,(ax)+constant. I U 

From the definition of the q-derivative we derive the q-integration by parts formula: 

so  

and 

Note that this result is not unique since we also have 

Therefore 

which is different from equation (14) above. 

q-analogue of Euler's formula which we now derive. 
The resolution of unity for the q-analogue of the coherent states is based on a 
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We first define -5  to be the largest zero of e,(x). Note that 3 is > O  and that as 
q + l ,  e,(x)+exp(x) and -5+-00. Whereas for q+O, e , ( x ) + l + x  and -5+-1. We 
then redefine e,(x) to be 

m 

(17) 
- A  

e,(x)= - for -5  < x and zero otherwise. 
" = o  [nl!  

In the same manner, we restrict the function f (x)  = X" to be X" for - I  < x and zero 
otherwise. Then using q-integration by parts (14) we obtain 

i loi eq(-x)xn d,x = q-"/*[n], lo eq(-q-1/2x)xn-1 d,x 

and then 

loi e,(-x)x" d,x 

x lo' e,(-q-"l2x) d,x. 

Since 

lo' e,(-q-"l2x) d,x = q"/2  

we see that all the q s  cancel to leave 

~ o ' e , ( - x ) x n d q x = [ n ] [ n - l ] [ n - 2 ]  . . . [  l ]=[n]! .  

This is the q-analogue of Euler's formula for T(x). 

by parts formula (16), also yields (21). 
Note that starting with the left-hand side of (18) and using the other integration 

The q-harmonic oscillator communication relations are 

(22) 
t -1/2 t -N/2  [ a , a i ] = a a  - 4  a a = q  

[ N ,  a'] = at 

and 

[ N ,  a ]  = -a. 

Under the occupation number basis 

a t (n> = m / n  + 1) 

a j n ) = J l ; ; l l n  - 1) 

a10)=0 (25) 

I =  c In>(nl. (26) 

a 14, = 14,. (27) 

where (m I n) = a,,,". The resolution of unity is written as 
m 

n = O  

The q-coherent states are defined to be eigenstates of the operator a. 
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For the normal coherent states, z is often a complex variable [27-291. However, in 
general, z depends on other considerations, for example the dynamics of the physical 
system one is describing. For the resolution of unity for quantum groups it is natural 
to restrict IzI such that IzI s 4. From (27) we get 

Requiring q < z I z),  = 1, 

Then choosing 4 = 0, 

where N ( z )  = eq((z(2)-”2. 

can be written 
There exists a resolution of unity for the coherent states. The identity operator I 

where 

Note that the integral over d e  is a normal integration but the integration over 1 . ~ 1 ~  is 
a q-integration. This result follows by 

x I exp(in0 -imO) deln)(ml 

where x = Iz(’. 
Then by the q-analogue of Euler’s formula in the case of quantum groups 

m 

n = O  

(33) 

So there exists a resolution of unity for the coherent states I z ) ~ .  The states with (zIz = 
do not contribute. 
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For historical completeness, we note that using Jackson's definition of [nIJ  and 
one of his identities (2), Arik and Coon [24] obtained a similar relation fifteen years 
ago. However, the old [24] and new [ 12-14] q-analogue generalizations of the harmonic 
oscillator, the convergence properties of the e,( z), the q-integration identities, and the 
integration measures are non-trivially different. 

For two arbitrary coherent states, la), and IP), 

so 

( a  I @ ) =  N(a)N(P)e,(.*P). (40) 
Since / n I C a a n d  I P I G ~ ,  we have /a*PISl .  Ingeneral e,(a*P)#Oandsoarbitrary 
coherent states are not orthogonal. 

As a result of the resolution of unity an arbitrary vector can be written 

I+) = [ Iz)qq(z I $) dP(Z). 

14, = [ Iz)qq(z I a ) ,  dP(Z) 

(41) 

Setting I+) = In), an arbitrary coherent state, then 

(42) 

so by the non-orthogonality of lz), and the q-analogue coherent states are linearly 
dependent. As a consequence, the q-analogue coherent states are not only complete 
but are actually overcomplete. 

A more detailed treatment will be provided in a thesis of one of us [30]. 

One of us (CAN) was partially supported by US Department of Energy Grant No. 
DE-FG02-86ER40291. We thank Professor R Askey for his comments on the properties 
of equation (3). 
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