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Abstract. g-integration is defined for the g-oscillator realization of quantum groups. This
is used to prove a completeness relation for the g-analogue of the usual coherent states.
These states are overcomplete.

The concept of integration is very important in mathematical physics and quantum
field theory. Jackson [1-3] introduced the idea of g-differentiation and g-integration
in ‘basic analysis’. Recently, in the g-harmonic oscillator realization of quantum groups
[4-17], several authors have extended the definition of g-differentiation [18-20]. In
this letter we use the idea of g-integration in the g-oscillator realization of quantum
groups to prove a resolution of unity for the g-analogue coherent states.

For a quantum group, such as SU,(2), we define for g real

n/2 —n/2
9 —4q
(nly=[nl="77——7. (1)
q q1/2_q 172

Note that [n], is invariant when g is replaced by 1/q. If we write g = exp(s) then since
sinh(n) = exp(n) —exp(—n)], we can write [n], =sinh(sn/2)/sinh(1/2). In the mathe-
matics literature [1-3, 21-26], one finds [n], = (1-g¢")/(1-gq). So ¢""""’[n], =[n],.
We define the g-factorial to be [n]!=[n][n—1][n—2]...[1]. Then

[ng!=[n]t=g "= [n], 1 (2)

Exton [2§, 26] defines a family of g-exponential functions by

oc n_an(n—1)

(3)

When A =0 and A =3, one gets the two exponential functions defined by Jackson [2].
For A =7 one gets an exponential function which is invariant to the transformation
g->1/4q.

o) z'l
e(z)= %

n=0 [n]!‘

Unlike the case of A =0 where the radius of convergence of the series representation

(4)
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is finite, for A > 0 this series representation of e,(z) converges for all finite values of z
independent of the value of g. Note that[1], =1 for all values of g and for n> 1, [n]=n.
So for all x=0
e,(x) =exp(x). (5)
For quantum groups, the g-derivative is defined to be [18-20]

d fCV2x)=f(q"%x)
Ef(x)= 7 x—qx (6)
q
For f(x) on the interval [0, a] the inverse operation is
j f)dgx=a(q™?=q") ¥ q@"2f(g> " a) 1)
4] n=0
and for the interval [0, c©)
J‘oof(x) dqx _ (q~1/2'q1/2) E q(2n+1)/2f(q(2n+1)/2). (8)
0 n=—oc
So
d n n—1
a(ax Y=a[n]x (9)
q
1
J ax""! dqx=max"+constant. (10)
Therefore, (d/d,x)e,(ax) = ae,(ax) and we have
1
J eq(ax)dqx=z e,(ax) + constant. (11)
From the definition of the g-derivative we derive the g-integration by parts formula:
d flg7"’x)g(q™"*x) — £(4'"*x)g(q'*x)
dq_x(f(x)g(x))= q._l/zx_q]/zx . (12)
So
s = (3510 ) ela 040 0 (Fa)  3)
d,x d,x d,x
and
¢ 1/2 d x=a ¢ d -1/2
g0\ 758 ) dx=fx)g(N) 2o~ | |\ 35/(x))a(g™""x) dx. (14)
o gX o \dgx

Note that this result is not unique since we also have

d d
4 (flx)g(x)) = (—- g(X))f(q‘MX) +g(q'?x) (a‘j;f(ﬂ)- (15)

d,x
Therefore

¢ d =a |°f d
|| a0 (32 a00) ax=smzeolizi- [ (3 500)s@ 0 ax a0
0 ax o \dgx
which is different from equation (14) above.
The resolution of unity for the g-analogue of the coherent states is based on a
g-analogue of Euler’s formula which we now derive.
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We first define —¢ to be the largest zero of ¢,(x). Note that { is >0 and that as
g-1, e,(x)>exp(x) and —{ > —o. Whereas for g-0, ¢,(x)>1+x and —{->-1. We
then redefine e,(x) to be

o0 n

e(x)= %

n=0 [n]!

In the same manner, we restrict the function f(x)=x" to be x" for —¢ <x and zero
otherwise. Then using g-integration by parts (14) we obtain

for —¢ < x and zero otherwise. (17)

¢ ¢
J e,(—x)x" d,x=q7""[n], J e,(—q " *x)x" " d x (18)
0

(4]
and then

¢
J e,(=x)x"d,x

o]

=(q7"[n1,q") (g " [n=11,4"%) ... (g7 [1]1q""" V)
¢
><J’ e,(—q "*x) d, x. (19)

Since

¢
J e,(—q7"?x)dx=q""? (20)
0

we see that all the gs cancel to leave

¢
J e, (—x)x"d,x=[n][n—1][n-2]...[1]=[n]! 21
0
This is the g-analogue of Euler’s formula for I'(x).

Note that starting with the left-hand side of (18) and using the other integration
by parts formula (16), also yields (21).

The g-harmonic oscillator communication relations are

la,a'l=aa’"—q "*a’a=q N (22)
and
[N,a'l=a" [N,al=—a.
Under the occupation number basis
a'lmy=vin+1]n+1) (23)
a|lny=v[n]n-1) (24)
al0y=0 (25)

where (m|n)=38,,,. The resolution of unity is written as
I= Z_:o ]n)(nl (26)

The g-coherent states are defined to be eigenstates of the operator a.

alz), =z|z2),. (27)
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For the normal coherent states, z is often a complex variable [27-29]. However, in
general, z depends on other considerations, for example the dynamics of the physical
system one is describing. For the resolution of unity for quantum groups it is natural
to restrict |z| such that |z|<+/{. From (27) we get

|Z>qE(O|z>q :Z::O\/rzn_]!lm. (28)

Requiring g <z|z), =1,
(0|z), =exp(id)e,(|z[*) "2 (29)
Then choosing ¢ =0,

|2)y = N(2) Z \/—1 n) (30)

where N(z)=e,(|z]?)™"%.
There exists a resolution of unity for the coherent states. The identity operator I
can be written

I= J |2)qq(z] dpu(2) (31)
where
d/.L(z)-———E%;eq(]z'z)eq(—lzlz) d, |z de. (32)

Note that the integral over df is a normal integration but the integration over |z|* is
a g-integration. This result follows by

j 12)ua(7] dia(2)

=2177 f ,,OZOO :N%J’EL, eo(—2P) dglz’
xf exp(in —im@) d6|n)(m| (33)
_51_ f §o mgo% ey(~|zI°) dy|z278,n|n)(m] (34)
52: i] r x"e,(—x) d, x|n)n| (35)

where x = |z[°.
Then by the g-analogue of Euler’s formula in the case of quantum groups

jlz>qq<zldu(z>= §O|n><n|=1. (36)

So there exists a resolution of unity for the coherent states |z),. The states with |z|*=¢
do not contribute.
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For historical completeness, we note that using Jackson’s definition of [n#], and
one of his identities (2), Arik and Coon [24] obtained a similar relation fifteen years
ago. However, the old [24] and new [ 12-14] g-analogue generalizations of the harmonic
oscillator, the convergence properties of the e,(z), the g-integration identities, and the
integration measures are non-trivially different.

For two arbitrary coherent states, |a), and |8),

(alB)= N(N(B) T °°0¢[n_<m|n> @)
-NaNe 5 L s, (38)
= N(a)N(B) ZO “nﬂ)n. (39)

So
(a|B)=N(a)N(B)e,(a*B). (40)

Since |a|<v/{ and |B| </, we have |a*B|=< (. In general e,(a*B) # 0 and so arbitrary
coherent states are not orthogonal.
As a result of the resolution of unity an arbitrary vector can be written

|w>=J’ |2)qqtz | ¢ du(2). (41)
Setting Iw) = la>q an arbitrary coherent state, then

0= [ 1tz |0 42 @)

so by the non-orthogonality of |z>q and |a>q, the g-analogue coherent states are linearly
dependent. As a consequence, the g-analogue coherent states are not only complete
but are actually overcomplete.

A more detailed treatment will be provided in a thesis of one of us [30].

One of us (caN) was partially supported by US Department of Energy Grant No.
DE-FG02-86ER40291. We thank Professor R Askey for his comments on the properties
of equation (3).
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